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The ParetoGP algorithm which adopts a multi-objective optimization ap-
proach to balancing expression complexity and accuracy has proven to have
significant impact on symbolic regression of industrial data due to its im-
provement in speed and quality of model development as well as user model
selection, [1], [2], [3]. In this chapter, we explore a range of topics related to
exploiting the Pareto paradigm. First we describe and explore the strengths
and weaknesses of the ClassicGP and ParetoGP variants for symbolic re-
gression as well as touch on related algorithms. Next, we show a derivation for
the selection intensity of tournament selection with multiple winners (albeit,
in a single-objective case). We then extend classical tournament and elite se-
lection strategies into a multi-objective framework which allows classical GP
schemes to be readily Pareto-aware. Finally, we introduce the latest exten-
sion of the Pareto paradigm which is the melding with ordinal optimization.
It appears that ordinal optimization will provide a theoretical foundation to
guide algorithm design. Application of these insights has already produced at
least a four-fold improvement in the ParetoGP performance for a suite of
test problems.

1 Introduction

The ParetoGP algorithm, [1], was originally inspired by the need to sort
through the plethora of results produced by application of genetic program-
ming to symbolic regression of industrial datasets. Once the key insight oc-
curred that the expressions of interest would lie along the Pareto front trading
off expression accuracy and expression complexity (which was assumed to be
a metric linked to the risk of overfitting), it was a natural evolution to mod-
ify the genetic programming algorithms to accommodate our view that the
Pareto front is where the interesting models resided which should be explored
during the evolutionary process. The resulting ParetoGP algorithm was in-
teresting on a number of fronts. First, the orders-of-magnitude improvement
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in modeling efficiency opened up the size and scope of data sets which could
be handled with the natural variable selection capability proving to be an im-
portant additional benefit for complementary nonlinear modeling techniques
such as neural networks and support vector regression. The second aspect was
that the user was presented with a natural set of models which explored the
trade-off between expression complexity and accuracy and, thereby, facilitated
post-processing model selection for subsequent model exploitation. The third
aspect was that ParetoGP required significantly smaller population sizes for
evolving good solutions [3] than conventional GP theory predicted. We believe
that this is due to the inclusion of an archive. Finally, the industrial impact
of the resulting modeling successes inspired additional research into the algo-
rithm [3], its applications, [4] and additional extensions and enhancements [5].

In this chapter we briefly review the ClassicGP and ParetoGP al-
gorithms and their characteristics and typical parameter settings. With that
context established, we take a look at tournament selection within the con-
text of multiple objective optimization and propose a ParetoTourneySe-
lect method which facilitates a Pareto-aware implementation of the classic
GP methodology. This method is attractive due to its simplicity and ease of
tuning the selectivity focusing. Prior to introducing the ParetoTourneyS-
elect method, however, we review the selection intensity of single-objective
tournament selection with single and multiple winners. This is of practical
importance since single-objective tournament selection is often used within
the ParetoGP algorithm as its selection method.

Finally, we introduce the notions of ordinal optimization and its appli-
cation to genetic programming algorithm design. Although still in the early
stages of the research, the insights derived from these concepts have been ap-
plied to ParetoGP to produce significant improvements in both modeling
efficiency and consistency as measured by the shape of the resulting Pareto
fronts.

2 Pareto-Aware GP - Variations on the Pareto Theme

A number of researchers independently explored parallel optimization of com-
peting objectives in genetic programming. We partition their approaches into
three broad algorithmic categories: ClassicGP, ParetoGP and Hierarchal Fair
Competition (HFC). In this section, we briefly review the ClassicGP and
ParetoGP classes.

When evolutionary search uses competing criteria, the optimal solution
may not exist. Instead,a set of alternatives,called the Pareto-optimal set,will
be an optimum. Pareto-optimal set consists of individuals for which no other
individual is superior in all criteria. In the objective space (e.g.model error
vs.model complexity) this set will form the Pareto front. So, each member
of the Pareto-optimal set surpasses all individuals of the search space (or all
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considered so far) in at least one objective, and hence becomes a candidate
for careful consideration and protection.

2.1 Variations on the Pareto Theme

Within the ClassicGP framework, Bleuler, et al, [6], assigned breeding rights
based upon the SPEA2 metric of a population with members of the Pareto
front persisting across generational boundaries. Saetrom and Hetland, [7], also
essentially followed this approach. De Jong & Pollack, [8], proposed a Pareto
front-centric approach wherein they synthesize new models each generation
which are merged with a persistent Pareto front and used to define an updated
Pareto front with propagation restricted to those models on the front (this
approach did not work very well).

Recently, we have recognized that HFC, [9], should be included in the
Pareto-aware algorithm category since it partitions models based upon accu-
racy fitness and restricted breeding and competition to models operating on
similar levels of the fitness axis. Although not explicitly using the Pareto front
by name, this approach is functionally Pareto-aware.

Obviously, the authors and their colleagues have pursued the ParetoGP
variant [1], [2]. However, the development of the ParetoTourneySelect
strategy has prompted them to include the ClassicGP framework within
their research repertoire.

Strangely, the publications from the other researchers have not noted the
explosive improvement in computational efficiency and robustness which has
been associated with ParetoGP on real-world problems. (The exception be-
ing HFC which Erik Goodman noted had a similar improvement in efficiency
in private conversation.) This may be due to the nature of their test suites
or the computational loads of the multi-objective selection schemes used to
assign breeding rights.

2.2 ClassicGP & ParetoGP

In the ClassicGP approach, illustrated in Figure 1, starting from a supplied
model set (if not supplied, random models will be synthesized), populations
are supplied to each of the parallel and independent evolutionary runs. Each
run consists of n generations wherein survival-of-the-fittest is applied to as-
sign breeding rights for the next generation. We enhanced the classic GP
approach by partitioning each evolution into cascades - groups of parallel
and independent short evolutions (runs) of different populations to prevent
inbreeding and maintain the diversity of solutions. Results consolidated at the
end of a cascade may be used to seed subsequent cascades. At the end of the
processing, the reported models are selected from the final cascade results.

Conversely, as illustrated in Figure 2, the ParetoGP approach uses a
new entity, called archive, co-existing with a population. The archive survives
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Fig. 1. ClassicGP Modeling Flow - There is room for Pareto-aware selection
strategies such as ParetoTourneySelect. Notice, the cascades are executed in
sequence and runs - in parallele v o l u t i o n a r yr u n( n g e n e r a t i o n s ) e v o l u t i o n a r yr u n( n g e n e r a t i o n s ) e v o l u t i o n a r yr u n( n g e n e r a t i o n s )O r i g i n a l M o d e l S e t( o p t i o n a l )

C o n s o l i d a t e d R e s u l t s R e p o r t e dM o d e l s
C a s c a d e R e s u l t s p o p # 1 p o p # 2 p o p # K

Fig. 2. ParetoGP Modeling Flow - Because ParetoGP defines its archive
using Pareto layers from the evolving populations, it is intrinsically a Pareto-aware
GP algorithm even if conventional single-objective strategies are used to select from
the archive and population M o d e l S e t ( o p t i o n a l )

M e r g e dP o p u l a t i o n P o p u l a t i o nA r c h i v e C h i l d r e n S t a r t o fC a s c a d e ? R a n d o mP o p u l a t i o nY e sN oN e wA r c h i v e A r c h i v e N e wP o p u l a t i o n
C o n s o l i d a t e d R e s u l t s R e s u l t sR u n # KR e p o r t e dM o d e l s

P a r a l l e lI n d e p e n d e n tR u n sC a s c a d e R e s u l t s S t a r t o fC a s c a d e ?Y e s

across the cascade boundaries, while the population for each parallel indepen-
dent run (however, only one run is typically run in parallel) is wiped out and
replaced by a new random population at the start of a new cascade. As shown
in Figure 2, breeding is pairwise with one parent from the archive and the
other from the population. At the end of a generation, after a new population
is created, the archive is updated with the Pareto layers from the archive com-
bined with the new population until the specified archive size is met. Because
the archive is defined and updated using Pareto layers, ParetoGP is intrin-
sically a multi-objective algorithm even if more classical selection methods
such as single-objective tournament selection are used to select the breeding
pool from the population and archive.

Choosing model complexity as a second optimization criterion in symbolic
regression involves a trade-off between exploration for good structural foun-
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dations and exploitation of those foundations to achieve models which are
both parsimonious and accurate. In ClassicGP, the exploration is accom-
plished by the parallel independent evolutionary runs with the exploitation
provided by the subsequent cascades as the foundation structures are refined
and recombined to produce the desired quality models. As a result, generally
the proper balance is to have many parallel independent runs feeding rela-
tively few cascades. In contrast, for the ParetoGP approach, the exploration
comes in primarily through the random populations introduced with each
cascade whereas the exploitation comes from the persistence of the archive
which survives across the evolution boundaries. Since new genetic material is
introduced with each random population, the exploitation continues despite
the maturation of the archive solution. Hence, for ParetoGP, many cascades
and fewer independent parallel runs is generally required. However, despite
the similarity of the resulting Pareto front results, the founder effect still ap-
plies so that apparent structures from a ParetoGP thread will generally differ
across independent evolutions.

We recommend extending the ClassicGP strategy from the conventional
single-objective realm (wherein accuracy is reduced by a complexity penalty)
into the multi-objective by using multiple selection criteria (e.g., Pareto-
TourneySelect or ParetoEliteSelect). In the next sections we will show
that this is a very powerful extension.

It appears that defining a methuselah function of the top 30% of the pop-
ulation mimics the effect of the ParetoGP archive and allows ClassicGP to
be competitive with ParetoGP performance. It may be, however, that the
inflicted influx of new genetic material at cascade boundaries may be advan-
tageous in simultaneously maintaining exploration along with exploitation.

3 Tournament Selection Intensity - Single & Multiple
Winners with One Objective

In the GP realm, tournament selection appears to have dominated its com-
petition (proportional, rank-based, elitist and random selection) due to being
efficient and able to balance exploration and exploitation simply by tuning the
tournament size used to select a winner. One reason for tournament selection
being efficient as well as robust is that the ranking used to identify the winner
is ordinal rather than depending on the absolute fitness values relative to the
rest of the population. This helps to avoid premature convergence in selecting
from a population as well as being computationally easy. We shall revisit the
implications of ordinality later in the chapter.

The likelihood of being both selected for a tournament as well as emerging
from the tournament as a winner is known as the selection intensity. In this
section we explore the selection intensity as a function of population size, n,
tournament size, t, and number of winners, w. As we shall see, allowing mul-
tiple winners to emerge from each tournament pool adds an additional ability
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to shape the selection intensity. There are two basic tournament selection
variants depending upon whether we allow replacement or not. If we allow re-
placement, a model can compete against itself for breeding rights. While not
physically realizable, this is often easier algorithmically than ensuring that
the tournament pool competitors are unique when we are making a random
draw. From a practical perspective, the selection intensities with or without
replacement are comparable for reasonably large population sizes. With that
as an introduction, we turn our attention first to the tournament selection
with replacement.

3.1 Tournament Selection with Replacement - single winner
situation

This approach is courtesy a conversation with Steffen Christensen. Basically,
we make a geometric argument that if we make t draws from a population - and
allow replacement - then we are really defining a location in a t-dimensional
space wherein each dimension is quantized. In order to get into the game,
the individual must be selected. In order to win the tournament, no better
individual may be selected. To compute the likelihood of being a winner, we
calculate the probability that the selected ensemble (where any given ensemble
is represented by a node, i.e., quantized location in the t-dimensional space)
doesn’t contain any higher quality individuals, this is simply represented by
the volume of the hypercube which excludes the higher-ranked models divided
by the hyper-volume of the overall space which includes the entire population.
This is calculated as rt

nt where r is the rank of the individual in question (with
larger numbers corresponding to higher rank). Excluding the likelihood of only
selecting individuals from the lower ranked models corresponds to identifying
the probability that only those models are selected, i.e., (r−1)t

nt . Combining
these results gives us the probability (a.k.a., selection intensity), p, of an
individual with rank r winning a randomly selected tournament of size t from
a population of n individuals.

p =
rt − (r − 1)t

nt
(1)

In Figure 3, we show the flexibility possible simply by varying the tour-
nament size. Note the nonlinear nature of the selection intensity as the tour-
nament size increases. Also note that due to the possibility of replacement,
that the likelihood of the top-ranked individual being selected is slightly less
than it would be in the selection without replacement cases. For example,
with a population size of 100 and a tourney size of 10, the top individual will
win breeding rights 9.56% of the time whereas without replacement, it should
achieve 10% of the breeding rights.
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Fig. 3. Selection Intensity Behavior for a Single Winner. Selection intensity
for tournaments of different sizes with a single winner for both the tournament
selection with and without replacement. t stands for the size of the tournament
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3.2 Selection Intensity without Replacement - single winner
situation

Now let us turn our attention to the situation wherein each member of the
tournament pool must be unique. Under the assumption of random selection,
the likelihood of any given individual being selected is simply the ratio of the
tournament size to the population size, i.e., t

n . To win the tournament, we
have the restriction that none of the other selections can be higher ranking
than the rth individual. The likelihood of this happening - conditioned on the
rth individual already having been selected is the product of the successive
likelihood of not selecting a better individual in any of the remaining t-1 draws
to fill the tournament

r − 1
n− 1

r − 2
n− 2

. . .
r − (t− 1)
n− (t− 1)

(2)

Notice that the pool decreases with each selection due to our assumption of
unique individuals being drawn. Also note that we need to handle the special
case when we have negative numbers; this happens at the point where there
is no chance that the individual will win a tournament - e.g., the bottom t-1
individuals. Pulling this together, we have the result,

p =
{

t
n

∏t−1
k=1

r−k
n−k r ≥ t− 1

0 r < t− 1
(3)

This response behavior is also shown in Figure 3. As noted previously,
despite the visual similarity of the two plots, there is a slight difference due
to the avoidance of repeated models in a given draw.

3.3 Selection Intensity without Replacement - multiple winner
situation

If we have more than one winner in a tournament, it is a fairly simple to extend
the above logic. Assuming a tournament size, t, which has w winners, we need
to consider w scenarios ranging from the situation wherein the given entity is
the top ranked tourney contender to the situation where it is the wthranked
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member of the pool (and, therefore, barely squeaking into breeding status).
Under the top-ranked member scenario, we simply have the prior single winner
situation, i.e.,

r − 1
n− 1

r − 2
n− 2

. . .
r − (t− 1)
n− (t− 1)

(4)

Note that the above is the product of t-1 terms since we are implicitly
assuming the given ranked model has entered the pool with a probability of
t
n where n is the population size. The probability of there being one higher-
ranked model is

(
t− 1

1

)(
r − 1
n− 1

r − 2
n− 2

. . .
r − (t− 2)
n− (t− 2)

)(
n− r

n− (t− 1)

)
. (5)

Here we need the binomial coefficient, ( t− 1
1 ), to account for the fact that

there are t-1 different ways that the better model can enter the tourney -
under the conditional assumption that the rth model has been selected. If the
top ranked model was being examined, then n-r would be zero so the series
would naturally truncate and zero out all successive scenarios. In a similar
vein, the probability of two higher ranked models is

(
t− 1

2

) (
r − 1
n− 1

r − 2
n− 2

. . .
r − (t− 3)
n− (t− 3)

)(
n− r

n− (t− 1)
. . .

n− r − 1
n− (t− 2)

)
. (6)

This sequence of situations to be considered would terminate at the point
wherein there are w-1 higher ranked models in the pool, i.e.,

(
t− 1
w − 1

) (
r − 1
n− 1

. . .
r − (t− w)
n− (t− w)

) (
n− r

n− (t− 1)
. . .

n− r − (w − 2)
n− (t− w − 1)

)
. (7)

Assembling the terms from the possible scenarios lead us to the summary
expression for the probability,

p =
w−1∑
s=1




(
t− 1

s

) 


t−(s+1)∏

k=1

r − k

n− k




(
s∏

g=1

n− r − (g − 1)
n− (t− g)

)
 · . . .

. . . · t

n
·

t−1∏

k=1

r − k

n− k
+

t

n

(
t−1∏

k=1

r − k

n− k

)2

, (8)

Note that the above expression is the probability of being selected for and
winning a given tournament. Under normal circumstances where we are trying
to assemble a group of breeders, we would need to execute fewer tournaments
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if we had multiple winners. Hence the above probability would typically be
normalized by the number of winners to get the population percentage.

In Figure 4 we show the effect of varying the number of winners and tour-
nament sizes. The important thing here is the ability to shape the selectivity.
A perusal of the GP literature seems to show that a tournament size of be-
tween three and five is generally used with a single winner emerging from each
tourney.

Fig. 4. Multiple Winners in Tournaments. The selection intensity effect of
changing the number of winners from a tournament for different tournament sizes
for tournament selection without replacement. Views varying the tournament size
as well as holding the tourney size constant and varying the number of winners are
shown
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3.4 Tournament Selection Intensity - Summary

In the above we have developed expressions for the tournament selection inten-
sity as a function of population size, tournament size and number of winners.
This allows us to have an explicit understanding of the implications of param-
eter settings as well as the ability to shape the selection intensity to produce
elitist-like behavior by having multiple winners.

4 Tunable Pareto-Aware Selection Strategies

As noted previously, the tournaments have emerged as the dominant selec-
tion strategy in genetic programming because of their simplicity, robustness
and effectiveness. Intuitively, we would like to incorporate this strategy in the
Pareto-aware GP implementations; unfortunately, the Pareto paradigm im-
plies multiple definitions of success so we have the problem of declaring the
winner from a tournament.

There are a wide variety of selection strategies which have been used
in multi-objective-optimization (MOO): NGSA, NSGA-II, SPEA, SPEA2,
MOGA, NPGA, DMOEA, VLSI-GA, PDE, PAES, PESA, etc. Most of these
rely upon the notion of dominance (the number of models which a given model
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beats), domination (the number of models which beat the given model), dom-
inance layer or a combination with breeding rights awarded based upon the
scores relative to the entire rest of the population. There are three fundamen-
tal problems with most of these selection strategies:
1) selection effort - it is computationally intensive to evaluate the popu-
lation for large population sizes (and the curse-of-dimensionality means that
we want large population sizes in multi-objective-optimization),
2) requirement for global awareness - the requirement for global aware-
ness of the population and their relative fitness makes it difficult for the se-
lection methods to scale well with population size or number of objectives,
3) tunability - we want to be able to have an easily controlled parameter
which will tweak the exploitation vs. exploration balance in selecting models
from the population for development.

Our approach to implementing a multi-objective tournament selection
strategy (which we call ParetoTourneySelect) is very simple: we form
pools of randomly selected models and, since we cannot distinguish between
them, the winners are all of the models on the Pareto front of that pool. We
keep repeating this process until we achieve the desired selection size. The
attraction of this strategy is that identifying the Pareto front of a population
is significantly easier computationally than doing the ranking associated with
conventional schemes. Additionally, working with smaller subsets of the pop-
ulation improves the efficiency of the Pareto front identification. Of course,
there is an additional obvious selection strategy - ParetoEliteSelect - in
which we assemble Pareto layers from the total population until a specified
elite size is achieved.

In this section we will use a very simple response model without any ad-
ditive noise, x2

1 (1 + x2) .
One hundred random evaluation points are created using four variables

each distributed over a range of [-10,10] with the response function responding
to the first two and the remaining two being spurious. We also synthesize
1000 random symbolic regression models with unique genomes (albeit, not
necessarily unique phenotypes) and evaluate the models against the observed
input-output data using a variety of accuracy metrics (2-norm and 1-R2) as
well as a model complexity metric (total sum of the sum of the nodes of all
subtrees in the genome).

In Figure 5, we show the results from identifying 1000 models from the
population using a TournamentSize or an EliteSize of 10% of the pop-
ulation size, as appropriate. Note that this method has focused the selection
process on the best models from a multi-objective perspective. As we can
see, both selection strategies focus on models which are candidates for further
development.

In Figure 6 we look at the distribution of the selected models and we see
the focusing effect of the Pareto tournament selection approach. Cleaning the
population and removing the models with duplicate phenotypes (defined as
having identical fitness values) improves the diversity in model selection and
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Fig. 5. Selection behavior of the ParetoTourneySelect and ParetoElite-
Select strategies - Here we select 1000 models from a population of 1000 random
models with no duplicate phenotypes with an elite size of 10% and a tourney size
of 10% of the population, as appropriate. We ran evolutions with model selection
in two accuracy metrics and plotted models that got selected in black. Note the
strong focusing of the ParetoTourneySelect strategy favoring models from an
interesting area of the objective space (here, an area of low model error and low
complexity)
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strengthens the focusing effect of the ParetoTourneySelect strategy. Note
that less than 100 of the 1000 model population would have been selected for
further evolutionary exploration and this subset is strongly skewed towards
a relative handful of models. However, this focusing considers the multiple
objectives. For comparison, we also show the results from the ParetoElite-
Select strategy.

One of our stated goals at the start of this section was to provide a multi-
objective selection function which replicated the one-objective characteristics
of tournament selection for ordinality, localized comparison and ease of selec-
tion intensity tuning. We have accomplished the first two; before we leave this
topic, let us demonstrate the tunability capability in Figure 7.

Selection Efficiency & Discussion

Table 1 and Table 2 show tabular looks at two scenarios. The first shows the
effect of tournament size on computation time as well as model diversity re-
sulting from applying ParetoTourneySelect to the 1000 model population
(evaluated with the norm metric). The second shows the effect of different pop-
ulation sizes holding the tournament size fixed as fraction of population size.
Note that the selection diversity (as measured by the % of population selected)
seems to be tied more to tournament size than to fraction of population used
within the tournament - which is an interesting result to be investigated in the
future. Also note that the time per model selected increases with increasing
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Fig. 6. Metric vs. Pareto Tournament & Elite Selection - Selection intensity
of the ParetoTourneySelect as a function of accuracy metric for 1,000 selections
from 1,000 models with a 10% tournament size or a 10% elite size. Note the strong
focusing of the ParetoTourneySelect strategy (depicted in black) relative to the
flat ParetoEliteSelect strategy (depicted in gray)
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Fig. 7. Tourney Size vs. Selection Intensity - Here we show the tuning effect
for selecting 1000 models from the unique phenotype random models in the test
case. Note that although the choice of fitness metric has an effect on the selectivity,
the shape of the selectivity is controlled by changing the tournament size

0 50 100 150 200
Model Number

0

20

40

60

80

C
ou

nt

1-R2

100 H13%L

50 H7%L

30 H4%L

10 H1%L

Tourney Size

0 50 100 150 200 250
Model Number

0

10

20

30

40

50

60

70
C

ou
nt

2-Norm

100 H12%L

50 H6%L

30 H4%L

10 H1%L

Tourney Size

tournament size since a lower fraction of the tournament emerge as winners as
the tournament size increases. A surprising result here is that evolutions with
the the ParetoTourneySelect method are executed in 33% less time than
those using the classical accuracy-based tournament selection scheme! The
fact that it happens despite all overhead in the Pareto front calculation for
ParetoTourneySelect is again explained by focusing of the multi-objective
tournaments on a small fraction of ’potentially’ optimal individuals and keep-
ing the average size of expressions smaller, which makes for faster evolutions.
We illustrate these results in Figure 8.

5 Ordinal Optimization & Application to Symbolic
Regression

The basic notion of ordinal optimization (OO) [10] is that for computationally
hard problems, our target is generally a good enough. solution rather than the
true optimal model. Since this is a similar viewpoint to industrial applica-
tion of symbolic regression, an exploration of the ordinal optimization and its
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Table 1. Selection Time and Diversity vs Tournament Size - Here we look
at the effect of tournament size on both the model diversity and selection time. The
Pareto tournaments was applied to the norm-metric set of 1000 models (processed
so that there were no more than two of any given phenotype) and 1,000 models were
selected. As a reference point, calculating the model fitness requires 1.7 seconds for
the population.

Pop Size Tourney Size % Selected Time (sec) Time/Model (ms)

1000 10 24 2.44 2.44
1000 20 18 2.31 2.31
1000 40 11 2.45 2.45
1000 80 6 2.75 2.75
1000 100 5 2.83 2.83

Table 2. Selection Diversity and Time vs. Population Size - Here we assume
that the population size is maintained and that the tournaments consist of 10% of the
population so, for example, 100 models are selected from the 100 model population
using a sequence of 10 model (10% of population) tournaments. (Subsets of the
model set of Table 2 are used.) Looking at the time/model selected column shows
the increasing Pareto front identification effort required with increasing tournament
sizes. Also note that the model fitness evaluation time scales linearly so the time
required for the 100 model population for this example is 0.17 seconds - which makes
the selection effort relatively small for that size population.

Pop Size Tourney Size % Selected Time (sec) Time/Model (ms)

100 10 34 0.03 0.3
200 20 20 0.1 0.52
400 40 13 0.34 0.85
800 80 7 1.1 1.38
1000 100 4 1.68 1.68

Fig. 8. Comparison of classical tournament selection with the ParetoTour-
ney. We plot the results of 11 independent evolutions per each method, and overall
Pareto-optimal sets (depicted in bold black). Note that the Pareto tournaments (plot
at the right) focus the energy on the most interesting area of the objective space.
Surprisingly, while computationally demanding, evolutions with the ParetoTour-
neySelect method have shown 35% improvement in the execution time compared
with the classical single-objective tournament selection
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application to symbolic regression is warranted. The foundation principles of
OO are first, that it is easier to get a ranking of candidate solutions than it is
to exactly compute the fitness values of the candidates. As a result, if we can
quickly identify a subset of solutions which are worth further investigation,
then we should be able to improve the efficiency of the model search. Second,
goal softening helps to smooth and direct the search i.e. instead of asking for
the absolute best it is better to ask for good enough with high probability.

5.1 Concepts & Tuning Parameters.

The OO mantra of "goal softening" could be expressed in the management
literature as "fail forward" - in other words, identify promising solutions as
quickly as possible and then pursue them. To a large extent, GP is already
ordinal in nature; however, as we shall see, the OO viewpoint leads to some
additional gains. First, let us review the aspects of Pareto-aware GP which
we can control to allow us to fail forward:

• fitness evaluation - evaluating the model quality is, typically, where
most of the computational effort is spent in symbolic regression. Within
that broad category, there are two knobs to turn:
1) fitness metric - even for symbolic regression choice of fitness metric
has a computational load component. Similarly, model complexity could be
represented by a variety of schemes as simple as node count or as complex
as nonlinearity estimates. This aspect is even more significant in other
genetic programming applications since a first-principles model evaluation
will require much more effort than needed for a first-order approximation.
2) data subset size - rather than evaluating the model at all data points,
subsets of the data can be used with, generally, a linear shift in the compu-
tational load required. If the data subset is static, then care must be taken
to properly balance the subset so that it is representative of the overall
data set. If the subset varies, then care must be taken that apples-to-apples
comparisons are made of quality results.

• variable selection - one of the best features of the Pareto-aware sym-
bolic regression is the automatic variable selection during the evolutionary
process so that ill-conditioned data sets with a plethora of nuisance vari-
ables may still be effectively analyzed. However, if the spurious variables
can be rejected, the efficiency of the modeling can be increased.

• selection method - selection has two aspects from a computational
efficiency viewpoint. The first is the effort required to identify quality
solutions (which is a strength of the single-objective tournament selection).
The second aspect is the focusing efficiency and controllability. For multi-
objective optimization, this is a strength of the Pareto tournaments since
it has a fuzzy threshold to separate good and bad models which can easily
be tuned. Also note that for multiple objectives that criteria subsets may
be used for model selection analogous to the data subsetting.
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• population (& archive) size - the size of the model set, obviously,
has a direct mapping into the computational load. One attraction of OO
is that it may provide a theoretical foundation for identifying the proper
problem-specific population size.

• generations per run - typically, the number of generations in a run
corresponds to the exploitation effort of discovered solutions. In the spirit
of OO we would want to use minimal generations in the early cascades
with increased generations in the later stages as we refine and explore the
foundation models.

• runs per cascade - the number of parallel runs within a cascade corre-
sponds to the exploration component of the symbolic regression. Especially
for a ClassicGP approach, OO would seem to guide us towards many
short runs in the early cascades and shifting towards fewer longer runs in
the latter stages.

• cascades per evolution - the number of cascades determines the ex-
tent of model exploitation. For ParetoGP the inclusion of additional
cascades is generally worthwhile due to the influx of new genetic material
at the cascade boundaries; for ClassicGP, additional cascades represent
diminishing returns after a certain point since the exploration component
is primarily associated with mutation.

• number of independent evolutions - the founder effect results in
early fit solutions dominating the population. Therefore, consistency of
the functional quality resulting from independent evolutions is an indicator
that an appropriate evolutionary effort has been applied.

5.2 Initial Application of OO to ParetoGP

Smits & Vladislavleva [5] adopted the viewpoint that the majority of symbolic
regression time is spent in the fitness evaluation and, therefore, performing an
ordinal evaluation using random subsets of the data rather than the complete
set was an attractive starting point for exploiting OO within GP. They looked
at three cases using ParetoGP wherein they varied the characteristics of
the cascades within the evolution process. The quality metric to compare
the results was the area under the modeling Pareto front for a 1-R2 accuracy
metric and a genome complexity metric ranging from 1 to 400. The population
and archive size of 100 models was run for ten cascades of 25 generations each
(250 total generations). A single-objective (accuracy) tournament selection
was used for both the archive (tourney size of 3) and population (tourney size
of 5) model selection. Three types of test problems, small, medium and large
were used. The small-sized problem was based on a known analytical function
with two inputs and a training set of 100 records generated by random uniform
sampling. The medium (8 inputs, 251 datapoints) and large-sized (18 inputs,
1000 datapoints) problems were based on real-life datasets with process noise.

Case I: constant subset and population size - keeping a constant
data subset size for all of the cascades with the subset randomly selected for
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each generation, actually led to the surprising result of improved Pareto front
quality as the data subset size decreased up to 40% of the original data set
size. The exception was a problem using data from a designed experiment
where each data point was unique and critical.

Case II: increasing subset and constant population size - here
the approach was to linearly increase the (random) subset size from 10%
to 100% of the data over a number of generations and finish the symbolic
regression using the full data set. This produced improved modeling results in
comparison to the first case with an interpretation that the smaller subsets in
the earlier generations introduced more noise into the modeling process and,
therefore, resulted in more exploration - analogous to simulated annealing.

Case III: increasing subset and decreasing population size - in
this case the data subset size was linearly increased from 10% to 100% of the
data over the first 80% of the generations with the full data set used for the
remaining 20% of the generations. The computational effort was kept constant
by starting with a model population of 1000 and linearly decreasing it as the
data subset size was linearly increased. Effectively, this resulted in a large
population for an initial coarse screen shifting to an intensive exploitation
with a smaller population in the final generations. This approach was a clear
winner both in terms of Pareto front quality and in consistency of modeling
results as measured by the standard deviation from 30 independent evolutions.
The results for this case are illustrated in Figure 9.

Smits & Vladislavleva also compared Ordinal ParetoGP (OPGP) run-
ning for 250 generations to conventional ParetoGP (PGP) running for 1000
generations for 30 independent evolutions. OPGP produced higher quality
and more consistent results than PGP despite only having a quarter of the
CPU cycles allocated to it relative to PGP.

Although ParetoGP was used in these initial studies, the computational
efficiency and accuracy gains should also apply to other flavors of genetic
programming. Actually, we should expect greater advantages since those ap-
proaches do not have an archive which would also have to be evaluated against
the various data subsets for each generation. The previous results on tour-
nament selection and Pareto tournament selection with single and multiple
winners offers some of the ingredients to advance the OO theory from Ho et
al to an ’iterative’ OO theory.

6 Conclusions & Summary

In this chapter we have introduced the notion of ordinal optimization and
its application to genetic programming. As demonstrated by the significant
performance gains of the exploratory investigations, this is a very exciting syn-
ergy with much promise for both the practitioner as well as the theoretician
since improvements in algorithm efficiency is always welcome to the practi-
tioner and ordinal optimization could provide a new theoretical foundation
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Fig. 9. Comparison of ParetoGP with Ordinal ParetoGP - Here we show
the results from the increasing subset and decreasing population size case. The initial
scatter in quality metric (% area under the Pareto front) for OPGP is due to the
differing random subsets used for the first 80% of the generations. Note the improved
model ensemble quality (as measured by the area under the Pareto front) relative
to the conventional ParetoGP as well as the improved consistency of results

Large Dataset Medium Dataset Small Dataset

Table 3. Here we compare the Ordinal ParetoGP performance against the conven-
tional ParetoGP for each of the data sets. Note that the OPGP running for 250
generations outperforms the PGP algorithm running for 1,000 generations (40 cas-
cades). This is the basis of the claim of at least a four-fold improvement in algorithm
efficiency.

Test Problem Method Mean Area% SD Area%

OPGP 250 gen 1.63 0.32
Small PGP 250 gen 2.83 0.90

PGP 1000 gen 1.69 0.46

OPGP 250 gen 1.53 0.04
Medium PGP 250 gen 1.65 0.09

PGP 1000 gen 1.51 0.08

OPGP 250 gen 3.42 0.14
Large PGP 250 gen 3.76 0.19

PGP 1000 gen 3.49 0.20

for genetic programming as well as guide the development of new algorithms
and concepts. The introduction of the ParetoTourneySelect method is
also significant in that it allows classical GP schemes to be easily migrated to
being Pareto-aware. It is also an extension of the single-objective tournament
selection method and, therefore, attractive because of the ease of tuning the
selection focus and diversity as well as exploiting a local ordinality (the tour-
nament pool) in the selection process - features which are useful as we migrate
to an ordinal optimization perspective with an explicit goal of failing forward
and initial exploration segueing into a refinement and exploitation stage.

In summary, the future is looking bright for continued advances in the
theory, application and impact of GP, in general, and symbolic regression, in
particular.
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